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Discrete element based simulations of granular flow in a 2d velocity space are
compared with a particle code that solves kinetic granular flow equations in two and
three dimensions. The binary collisions of the latter are governed by the same forces
as those governing the discrete elements. Both methods are applied to a granular
shear flow of equally sized discs and spheres. The two dimensional implementation
of the kinetic approach shows excellent agreement with the results of the discrete
element simulations. During change to a three dimensional velocity space, the qual-
itative features of the flow are maintained. However, some flow properties change
quantitatively. c© 1999 Academic Press
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1. INTRODUCTION

Flows of granular materials are widespread in our environment, for example, in natural
phenomena like avalanches or sand storms, or in industrial and technological processes,
where bulk materials like grains, coal, ore, etc., are transported, screened, or crushed.

The two major regimes in which motion of granular media occurs are rapid and slow
flows. The latter are characterized by long duration contacts between particles during their
motion. In this regime, bulk properties of moving granular media are controlled by the
Coulomb inter-particle friction forces. In rapid flows on the other hand, particles move
freely between successive collisions. Transfer of particle kinetic energy and momentum
within a rapidly flowing granular medium occurs during these collisions and they govern
the transport properties.
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Particle impacts within granular materials are related to kinetic energy losses, associated
with the inelasticity of collisions and the surface roughness. Hence, a constant source of
mechanical energy is needed to sustain the motion of granular material.

Different approaches to modelling the dynamics of granular flow lead to different levels
of description:

1. The microscopic level. Simulations of granular flow as an ensemble of a large number
of rigid bodies are generally deterministic models. Every “real” particle is represented by
exactly one “virtual” particle in a computer code. Particles move in a potential field and
their interactions are defined by different models. The Lennard-Jones potential leads to
molecular dynamics simulations [1] while linear or Hertzian forces lead to soft particle
descrete element methods [3, 40, 10, 11]. Details of this method are described later in this
paper. Recent applications of such methods include grinding ballmills [12], hoppers [31],
particle breakage [31], granular conductivity [18], the filling of dragline buckets [13], and
many more.

2. The mesoscopic level. Starting from anN-particle system described by the Liouville
equation, a system of equations fors-particle systems (s< N) may be derived. This so-
called BBGKY hierarchy leads—in the limitN →∞ and under certain assumptions—to
a kinetic equation for the one-particle density function in the phase space. A rigorous
treatment for hard spheres yields the well-known Boltzmann equation. In the following, a
derivative [16, 29] of the Boltzmann equation is considered, which takes into account the
dense character of granular flows as well as the energy loss at impact.

3. The macroscopic level. The highest level of description consists of macroscopic field
equations, generally partial differential equations. This is the more conventional scale for
simulations but will not be considered in this work. Macroscopic equations that are es-
tablished from the same granular flow equation used in the present paper can be found in
[16]. For the derivation of the relevant moments in a shear flow as well as comparisons to
experiments see [22].

The most common approach to the solution of kinetic equations on the mesoscopic scale
is the Direct Monte Carlo Simulation (DSMC) method, originally developed for rarefied
gases [4]. It is based on the idea of simulating large particle systems using a small number
of representative particles.

A second approach to rarefied gases has been designed to numerically solve the
Boltzmann equation [5]. It has been shown that the two methods are equivalent in their
results [39].

Especially for the DSMC approach there exist variations to treat dense gases [2, 15, 25].
The present paper presents a mathematically sound method of numerically solving the
kinetic granular flow equation given below. As it is based on the approximation of continuous
measures by discrete measures, this method is known as the Finite Pointset Method (FPM);
see, e.g., [27].

One of the essential characteristics of the kinetic ansatz is the binary type of collisions; i.e.,
exactly two particles are involved in any particle collision. After contact, all particles must
separate from each other again. Permanent or long-term contact between any two particles is
difficult to consider for the kinetic framework used to describe granular flows in this paper.
Therefore, the problems considered here are set in the rapid flow regime. Furthermore,
gravity is neglected. A simple test case may already show differences between simulations
on the microscopic level and on the mesoscopic level; see, e.g., [26, 20]. Good agreement
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between the two levels can be found in [15], where a dense gas close to a solid wall is
considered.

In this paper, the two levels of description are compared within a test case that is 1d in
space, namely a Couette flow at a moderate packing density. Granular material is enclosed
between two parallel walls. External energy is introduced by shearing the walls in opposite
directions (Couette flow), where the distance between the walls remains constant. This
shears the granular material, setting up non-linear velocity and density distributions. For
this test case a comparison of DEM with theory can be found in [7].

The present work is organized as follows. In Section 2, an introduction to the kinetic
formulation is given. A particle scheme to determine a solution of the kinetic equation is
outlined. The soft particle discrete element method (DEM) is introduced in Section 3. A
first simulation of a spatially homogeneous case gives the relationship between the mean
free path and the solid fraction for different “soft” collision parameters. In Section 4 both
methods are applied to the Couette flow and the results compared, when the velocity space
is two dimensional. Comparisons of the 3d kinetic particle scheme and the 2d DEM are
also made. Finally, the two methods are compared with respect to their calculation times.

2. FORMULATION OF THE KINETIC APPROACH TO GRANULAR FLOW

A derivative of the Enskog [14] equation for dense gases is the following kinetic equation
for granular flows [16]. It refers to a densityf in phase space, such thatf = f (t, x, v,ω) is
a scalar function of timet , positionx∈3⊂R3, velocityv∈R3, and spinω ∈R3. We denote
w= (v,ω) as the vector including both velocity and spin. The particles are considered to
be spheres with diametera. Also, we do not restrict the model to energy conserving particle
encounters. The kinetic equation for granular flow is then

∂ f

∂t
+ v · ∇ f = J( f, f ), (1)

J( f, f ) =
∫ ∫

R6×S2

k(v′′21 · η)h(2)
(
n
(
t, x− a

2η
))

f (t, x,w′′) f (t, x− aη,w′′∗) dκ(η) dw′′∗

−
∫ ∫

R6×S2

k(v21 · η)h(2)
(
n
(
t, x− a

2η
))

f (t, x,w) f (t, x− aη,w∗) dκ(η) dw∗

together with the velocity transformation

(w,w∗) = T(w′′,w′′∗), wherew∗ = (v∗,ω∗), w′′ = (v′′,ω′′), etc.

The vectorv21 = v∗ − v is the relative velocity of two colliding particles,η is a unit
vector in the direction of the line of centers of two spheres of diametera at the time of their
impact, andκ(η) is the probability measure on the unit sphereS2. The collision integral
J( f, f ) preserves the same binary structure of the corresponding Boltzmann term, but the
colliding spheres occupy different positions in space. The collision frequency is modified
by the factorh(2) which approximates the pair correlation function [33].

In the framework of the so-called Standard Enskog Theory (SET),h(2) is simply set
equal to the equilibrium pair correlation evaluated at the point of contact (see [32] for an
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example). From the Carnahan and Starling [8] approximation of the equation of state, the
total equilibrium pair correlation in a 3d position space is found to be

h(2)3d (n) =
2− ν

2(1− ν)3 . (2)

Here,ν denotes the solid fraction of the medium; e.g.,ν= n
6πa3 for hard spheres, wheren

is the number density. In the limitν→ 0, the correlationh2(v) tends to one.
Up to now, it is not clear which equation of state is the most suitable one for granular

flow. As we want to make clear the relation of (1) to the Enskog equation, in this work
the pair correlation is always taken from SET. For a survey of different pair correlations in
granular flow see, e.g., Goldshteinet al. [17].

The factork(·) in (1) is the collision kernel for hard spheres,k(v21 · η)= 4πa2(v21 ·
η)θ(v21 · η), whereθ is the Heaviside function.

The velocity transformation conserves linear and angular momenta; yet in order to find
the post-collisional velocities(w,w∗)= T(w′′,w′′∗), one needs further relations. For hard
spheres, where the binary collisions are instantaneous, one commonly relates the post-
collisional relative velocity to the pre-collisional one [16]. If(v21 ·η) > 0, then the relative
velocity at the contact point before collision is given by

g21 =
(
v∗ − a

2η × ω∗
)− (v+ a

2η × ω
) = vηη + vτ , (3)

wherevη = (v21 · η) is the modulus of the normal component of the relative velocity and
vτ is its tangential component,

vτ = v21− η(v21 · η)− a
2η × (ω + ω∗). (4)

After collision the velocity components are

v′η = −evη, (5)

v′τ = −βvτ , (6)

where the two coefficientse andβ characterize the collision process.e is thecoefficient
of restitutionor inelasticity in the normal direction, 0< e≤ 1, andβ is the roughness
coefficient in the tangential direction,−1≤β ≤ 1. For perfectly rough spheres one hase=
β = 1, wherease= 1,β =−1 for perfectly smooth spheres. These post-collisional velocities
are then uniquely determined [16].

With the help of the one-particle distributionf (t, x, w), the macroscopic moments off
are obtained: the number densityn, the bulk velocityu, the inner translational energyev,
and the inner rotational energyeω:

n(t, x) =
∫

f (t, x,w) dw, (7)

u(t, x) = 1

n

∫
v f (t, x,w) dw, (8)

ev(t, x) = m

2n

∫
|v− u|2 f (t, x,w) dw, (9)

eω(t, x) = I

2n

∫
|ω − ω̄|2 f (t, x,w) dw. (10)

In the above,I denotes the moment of inertia of a particle and ¯ω the mean spin.
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2.1. A Particle Method for the Kinetic Granular Flow Equation

The solution method for the kinetic granular flow equation (1) is explained in detail in
[29]. It is a derivative of the finite pointset method (FPM) developed at the University of
Kaiserslautern to solve the Boltzmann equation. The following FPM is based on the time
splitting of (1).

Introducing two fractional time steps one solves first the free transport equation in [0,1t ],

∂ f

∂t
+ v · ∇x f = 0. (11)

If the particle approximation of the initial valuef (0, x,w) of (11) is given by some discrete
measure1

N

∑N
j=1 δx j δw j , then the time evolution of the particle ensemble is simply

1

N

N∑
j=1

δx j+1tv j δw j . (12)

Boundary conditions are also taken into account during the free flow. Collisions with the
wall are modelled via the same laws and parameters as a regular particle–particle collision;
see Eqs. (5)–(6).

In a second step the time dependent kinetic granular equation without free flow,

∂ f

∂t
= J( f, f ), (13)

is solved. To simulate Eq. (13) via a particle method, an explicit Euler step is used and
Eq. (13) is written in its discretized form,

f (1t, x,w) = f (0, x,w)+ J[ f, f ](0, x,w). (14)

f (1t, x,w) is then used in the next time step as the new initial condition for the free flow.
Equation (14) is now considered in a weak formulation; i.e., it is multiplied by a continuous
test functionϕ:3×R6→ R and integrated over the phase-space3×R6. This leads to∫ ∫
3×R6

ϕ(x,w) f (1t, x,w) dw dx

=
∫ ∫ ∫ ∫

3×R6×R6×S2

[
1t k(·)h(2)(·)ϕ(x,w′)+

(
1

n(0, x− aη)
−1t k(·)h(2)(·)

)
ϕ(x,w)

]
× f (0, x,w) f (0, x− aη,w∗) dκ(η) dw∗ dw dx. (15)

In such a particle scheme, if one particle is located at a positionx, then in general no particle
can be found atx−aη, the position of the collision partner. Therefore, a collision partner
is allowed to be at a positionx∗ close tox − aη. This idea is known as mollifying and
details are contained in [37, 28]. To solve the mollified version of Eq. (15) we need an
approximation of the product measure,

f (0, x,w) f (0, x∗,w∗) dκ(η) dw∗ dx∗ dw dx, (16)
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given only an approximation off (0, x,w) dw dx [27]. Then one can compute the time
evolution of the measure due to (15): The factor 1−1t k(·)h(2)(·)n(0, x−aη) may be
interpreted as the probability of a dummy collision, keeping the old velocities and spins.
1t k(·)h(2)(·)n(0, x−aη) is the probability of a real collision, changing(w,w∗)→
(w′,w′∗) = T(w,w∗). This is also the restriction on the step. Equation (15) is only sensible
in the sense of measures, if the time step fulfills

1t k(·)h(2)(·) ≤ 1

n(t, .)
(17)

for all timest , all relative velocitiesv21, and all positionsx. This means that the time step
is determined by the maximum inner translational energyev and the maximum densityn
that might occur in the flow.

In the presence of a boundary, e.g., two parallel walls as in the shear flow example later on,
a number of different boundary conditions are known. The diffuse reflection is commonly
used in rarefied gas dynamics. It essentially means that any particle hitting the surface is
scattered back randomly and independently of the velocity vector with which it hit the
surface; see, e.g., [9].

As the scope of application in the present paper is focused on particles which are larger
than molecules, the specular reflection is used in the following. This means that at collision,
the wall is viewed as another sphere of certain velocity (the wall is allowed to move or shear
in the Couette flow case) and spin (usually zero spin). Then the same velocity transformation
as that in (5)–(6) is applied to the particle; the velocity of the wall stays constant during the
collision.

The accuracy of the FPM has, in the rarefied regime, successfully been checked against
some results of Bird’s [4] well known DSMC-code; see, e.g., [38].

A word on the range of validity of the FPM: In the limitν,a → 0, i.e., in the rarefied
regime, Eq. (1) converges to Boltzmann equation. The efficiency and accuracy of the FPM
in this limit has been treated by many different authors; see, e.g., [5, 27, 38]. For an
increasingly large solid fraction(ν ≥ 0.3), the results of the FPM disagree more and more
with the results obtained by discrete element methods. This is mainly due to the molecular
chaos assumption, which, with increasing solid fraction, becomes more and more untrue.
In the test case described later on, we consider a solid fraction of onlyh(2)3d = 0.1, where the
molecular chaos assumption is sufficiently corrected by the additional factorh(2)3d in Eq. (1).

In the present test case, the inner translational energyeN
v at a positionx with a numerical

density ofN particles per unit length is found to converge at the order ofO(N−1) toward its
limiting energy densitye∞v (convergence inL∞-space). This is described in Subsection 4.2.

For more details about the FPM we refer to the above cited references.

3. FORMULATION OF THE DISCRETE ELEMENT MODEL FOR GRANULAR FLOW

Modelling a force that represents an inelastic collision requires at least two terms: re-
pulsion and some sort of dissipation. The simplest force with the desired properties is the
damped harmonic oscillator shown in Fig. 1.

The normal forceFη has a spring component to provide the repulsive force that pushes the
particles apart, and a dashpot that provides dissipation, resulting in an effective coefficient
of restitution. The tangential component is again modelled by a spring and a dashpot; yet it



KINETIC THEORY AND DISCRETE ELEMENT SCHEMES 7

FIG. 1. The spring–dashpot model. The normal forceFη and the tangential forceFτ both use a spring and a
dashpot. The tangential force is also limited by friction.

is subject to the frictional limit ofµFη, whereµ is the dynamic friction coefficient. Contact
force models are discussed in review articles [3, 40]. In the following, only mono-disperse
spheres are considered, where the mass is denoted bym and the moment of inertia byI .

The equations for the forces are

Normal force: Fη = −cηvη − kηξ (18)

Tangential force: Fτ = −min

{
µ|Fη|, kτ

∫ t

t0

vτ dt′ + cτ vτ

}
, (19)

wherecη, cτ ≥ 0 are the normal and the tangential damping coefficients (representing the
dashpots),kη, kτ ≥ 0 are the normal and tangential spring constants, andµ≥ 0 is the friction
coefficient.vη, vτ are the (scalar) velocities in the normal and tangential directions with
vη(0) > 0 andvτ (0)≥ 0.

The spring elongationξ ≥ 0 is the actual overlap of the two particles. The spring in the
tangential direction is loaded by the relative tangential movement of the particles’ surfaces,
given by integration ofvτ over the time from the onsett0 of the collision until timet . The
initial conditions areξ(0)= 0 andvη(0)= v21 · η> 0, wherev21= v2− v1 is the relative
velocity between two colliding particles at positionsx2 andx1 at the beginning of a collision.
The unit vectorη points fromx2 to x1.

Newton’s law,

m∗ξ̈ = Fη, (20)

wherem∗ =m/2 is the reduced mass, can easily be solved whenkη > c2
η/4m∗ to give

ξ(t) = vη(0)

γ
exp

(
− cη

2m∗
t

)
sin(γ t), (21)

with

γ =
√

kη
m∗
− c2

η

4m2∗
. (22)
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The encounter timet∗ that elapses during a collision ist∗ =π/γ . If an inelasticitye∈ [0, 1]
as defined in (5) is given, thencη is found to be

cη = −2
√

m∗kη · ln(e)√
π2+ ln(e)2

, (23)

with ln(·) the natural logarithm.
The scalar forcesFη andFτ still have to be transformed into the global coordinate system.

The resulting force of a particlej acting on particlei in the global coordinate system is
denoted byF j i .

The equations of motion for the particles are then the following (i = 1, 2 for a binary
collision).

ẋi = vi (24)

v̇i = 1

m

∑
j

F j i (25)

ω̇i = 1

I

∑
j

M j i . (26)

To find the resulting forcesF j i we assume that the unit vectorη points fromx j to xi . The
unit vectorτ is orthogonal toη throughout a collision, initially pointing in the direction of
the tangential velocity vectorvτ ; see Eq. (4).

The forceF j i is composed ofFη andFτ , the relative forces in the binary collision, via

F j i =
{−Fηη + Fττ , for |xi − x j | ≤ a andi 6= j,

0, else.
(27)

It follows, thatF j i =−Fi j holds. The torque is defined as

M j i = −a

2
Fτ (η × τ ), (28)

andM j i =M i j .
The choices of the tangential parameterskτ andcτ determine the frequency of the tangen-

tial oscillation. Yet, the tangential force in (19) is coupled to the normal force (both forces
accelerate the centres of mass; hence the change ofvτ also depends onFη). A general
analytic solution to the system (24)–(26) is not known to us.

Since the encounter timet∗> 0 is now finite, collisions of three or more particles in a
flow field are possible. The larger the encounter time, the larger the number of triple or
quadruple collisions.

In the present code, the equations of motion (24)–(26) are solved by an explicit time
stepping scheme, where the time step1t is set to

1t = t∗
25
. (29)

Before the above methods are applied to the Couette flow test case, the DEM is applied
to the homogeneous case. By tracing the mean free path, the pair correlation function is
determined for different spring parameters.
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3.1. Application of the 2D-DEM to the Homogeneous Case

A characteristic feature of dense hard sphere gases is that, for a solid fractionνÀ 0, the
mean free pathλ is no longer proportional to the inverse of the number density of the flow.
An additional factor comes into play, which originates in the pair correlation evaluated at
the contact point of a binary collision.

For a gas at equilibrium, the mean free paths are known to be

λ2d =
√

2

4nah(2)2d (n)
, (30)

λ3d = 1√
2nπa2h(2)3d (n)

. (31)

To determine the equilibrium mean free path, knowledge of the pair correlation function
h(2), which is gained from the equation of state, is required. The equivalent of (2) in the
case of hard discs [34] leads to

h(2)2d (ν) =
2− ν

2(1− ν)2 , (32)

whereν = 1
4πa2n for discs.

Equation (30) is now used to check the DEM for a homogeneous flow of smooth elastic
discs. Two problem sizes are used with 400 and 1000 discs, respectively. They are placed
in a square box with periodic boundaries in each direction. The size of the box determines
the solid fraction. In these simulations the parameters of the soft particle collision model
are set tokη= 10,000 N/m, the massm= 0.96 kg, andcη=µ= 0. The initial velocity of
the particles is such that the mean relative normal velocity vectorv̄η, defined by

v̄η = 1

πn2

∫ ∫ ∫
R2×R2×S1+

(v21 · η) f (v) f (v∗) dη dv dv∗, (33)

is given as̄vη ≈ 0.59a/s, in the units of disc diameters per second. In the above,S1+ is the
half unit circle with(v21 ·η) ≥ 0.

The resulting mean overlap of the binary collisions is around 0.9%; i.e., the collisions
are not very soft, but rather close to a hard disc collision. The maximal overlap encountered
in the simulations is less than 5%. The mean free path between collisions is calculated
and gives the pair correlation from (30). In Fig. 2, the 2d pair correlation from the DEM
simulation (denoted by◦) is compared to the 2d hard disc pair correlation (the solid line)
calculated using Eq. (32). This is the instantaneous hard collision limit askη →∞.

The agreement of these data with those of the hard disc correlation is very good, with only
a small deviation appearing for high solid fractionsν2d ≥ 0.55. The deviation increases
with solid fraction because an increasing proportion of particles are involved in collisions
at any time. A mean overlap of less than 1% is sufficient to ensure that results are close to
those of hard disc collisions.

Next, the mean free path is measured for softer collisions, when the mean particle overlap
is 2.6% and 7.9% forkη/m= 1042 s−2 andkη/m= 104 s−2, respectively. In other words:
For a constant massm, decreasing the spring constantkη by a factor of 10 (thus softening the
spring) causes the mean particle overlap to increase by a factor of 3.04≈√10. The normal
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FIG. 2. The 2d correlation functionh(2)2d at contact for different mean overlaps.

relative velocityv̄21 is the same as that in the previous case. Table I shows the mean and
maximum soft particle overlaps obtained from the DEM for various parameter ratioskη/m.

The corresponding correlation functions for the larger overlaps are shown in Fig. 2 and
denoted by+ and∗. For an overlap of 2.6%, the difference between the soft and hard disc
correlations is small forν2d ≤ 0.2, then increases with the solid fraction. For an overlap of
7.9% the soft disc correlation differs substantially from the hard particle correlation for all
but the lowest solid fractions.

Theoretically, the derivation of the mean free path in Eq. (30) is only valid for hard
disc potentials. But, as a first approximation, it gives suitable correlation functions for soft
encounters. Decreasing the spring constantkη increases the collision timet∗ and therefore
the mean overlap. This produces more space for the other particles leading to an increase
in the mean free path and a corresponding decrease in the correlation function.

The mean overlap, which depends on the mean normal relative velocityv̄21 and the spring
to mass ratiokη/m, is the essential parameter that determines how close the characteristics
of a soft sphere flow are to those of a hard sphere flow. This confirms that the typical 1%
overlap criterion used in DEM applications is adequate to ensure that the particles behave
as hard particles.

TABLE I

The Mean and the Maximal Overlap for Dif-

ferent Parameter Ratios and a Constant Mean

Relative Velocity v̄21 ≈ 0.59a/s

kη/m Mean overlap Maximal overlap
(s−2) (%) (%)

10,416 0.9 5.0
1,042 2.6 15.2

104 7.9 56.7
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It is important to recall that for an increasing encounter timet∗, triple and multi-body
collisions are more and more frequent. Hence, if the above correlation functions for soft
encounters are to be used in a kinetic formulation such as the kinetic granular flow equation
for hard spheres, Eq. (1), one must check the validity of the binary collision ansatz. In
the following section we assume that the encounter timet∗ is small in comparison to the
mean time between collisions. We take this as an argument that the binary model is still
sufficiently well-suited.

4. THE COMPARISON CASE: A GRANULAR COUETTE FLOW

A dense granular particle ensemble is situated between two parallel oppositely moving
plates. Without an energy source, the ensemble would converge toward a zero granular
temperature state. In a Couette flow, energy is constantly supplied to the system by the
shearing. Figure 3 shows the Couette flow configuration used in these simulations. Particle–
wall and particle–particle collisions are modelled according to the spring–dashpot model
(18)–(19). In subsequent simulations, both hard sphere and hard disc, the moment of inertia
I is set to be the moment of inertia for discs,I =ma2/8, thus providing a constant base for
comparison.

4.1. Convergence to Steady State and Data Averaging

The particles are started with random positions and velocities with an average of 0.59a.
The first flow regime is transient with the particles rearranging, exchanging momentum
and energy, and evolving toward a steady state. A criterion is needed to determine when
the transient regime has ended and the profiles have become stationary. We have found
that among the first and second moments, such as density, bulk velocity, bulk spin, and

FIG. 3. The Couette flow configuration.
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FIG. 4. Convergence of the mean inner energy with time.

inner energy, some of the profiles become stationary later than the others. In particular, the
transients of the inner energy vanish last for the Couette flow. Therefore, we calculate the
spatial mean of the inner energyev + eω and smooth it over a short length of time. The
time interval of averaging increases with time, thus reducing the influence of the noise. In
Fig. 4, the convergence for the FPM to steady state is shown. The time is scaled by the mean
time between collisionstm, which is the ratio of the mean free pathλ and the initial most
probable speedc0. The mean of the sum ofev andeω is scaled to3

4mc2
0.

Here, the first averaging is done over 5 time units, then over 10, 15, 20, etc. This averaging
is necessary to eliminate the noise in the inner energy that arises from the energy transfer
between the particles and the energy of the springs in the collision model. After 1290 time
units, the inner energy has sufficiently converged and the flow is considered to be stationary.

Data are not collected at every time step since the particles move only small distances
between time steps and thus these data are not highly correlated. Aftertm, the average time
between collisions, the particles have all moved to new positions and have experienced
different collisions. The data used for averaging are therefore sampled everytm time units
to ensure that these data are statistically uncorrelated.

The length of the averaging interval determines the number of sets of data used in the
averaging. The average of the data at a specific time varies from the underlying asymptotic
flow by an amount which decreases with the number of data. Ifts denotes the time at which
the flow field has become stationary, then the first averaging is over the interval [ts, ts+10],
then over [ts, ts+ 20], [ts, ts+ 40], and so on. LetNt denote the number of times at which
uncorrelated data are sampled. The standard deviation, which is a measure for the noise of
the profiles, is then of the order of 1/

√
Nt . In particular, in the following simulations the

averaging takes place over 5120 points in time, leading to maximum errors in the profiles
of the order of 1.4%.

4.2. Numerical Order of Convergence for the FPM

The profiles of the stationary solution may vary slightly with the number of particlesN
per cell used in the simulation. We found that the number density as well as the bulk velocity
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is independent ofN. However, second moments likeev andeω are, for initially N= 10 per
cell (using 10 cells to resolve the distance of one mean free path), around 10% lower than
the respective profiles forN →∞.

To find the order of convergence of the latter profiles, we compare the stationary, time-
averaged energy profiles of the inner translational energyeN

v , depending on the number of
particlesN per cell. If we assume that theL∞(3) norm of the difference ofeN

v and the
asymptotic solutione∞v converges with orderk for N →∞,∥∥eN

v − e∞v
∥∥

L∞ = O(N−k), (34)

then we define the numerical rate of convergencek,

k := log j

∥∥eN
v − ej N

v

∥∥
L∞∥∥ej N

v − ej 2N
v

∥∥
L∞

, (35)

where j is a natural number. From the simulations for the Couette flow a numerical rate of
convergence ofk≈ 1 is found; i.e., forN= 100 particles, the energy profileeN

v is within a
1% range of the asymptotic solutione∞v .

4.3. Considerations on the Time Step

A critical point for an objective comparison of the two methods is the choice of the time
step. The time step in the FPM is, for a bounded collision kernelk(·), only dependent on the
inner energyev(t). If, for a proper comparison, the mean overlap in the DEM is to be kept
less than 1%, then the parameter ratiokη/mmust be appropriate for the inner energyev. The
higher theev, the higher thekη/m. Accordingly, the encounter timet∗ decreases. If larger
time steps (softer springs) are used for the DEM, not only does the particle overlap increase,
leading to deterioration in the pair correlation function (see Fig. 2), but aberrant behaviour
such as the “detachment effect” and the “brake failure effect” begins to occur [35].

The time step for the DEM must accurately integrate the binary soft particle collision
(see Eq. (29)). For a parameter ratio ofkη/m= 10,416 s−2, the time step1ts of the spring–
dashpot model has to be approximately 40 times smaller than the time step1tk of the FPM.
This immense difference in the time steps is due to the main characteristics of both schemes.
Where the DEM has to integrate the equations of motion for all collisions in a deterministic
way, the FPM lets the particles move freely for some time (about 1/20 of the mean time
between collisions) and determines the effects of collisions afterward, using probabilistic
means.

4.4. The Choice of Parameters for Comparison

For the DEM a set of 100 discs is used, while 10,000 particles are used for the FPM. The
initial solid fraction is chosen asν2d= 0.213 and the distance between the plates is set to
L = 10λ+a, so that the width of the flow field is 10 mean free paths.

Every collision in this DEM simulation dissipates energy according to the spring–dashpot
model with spring–mass ratiokη/m= 10,416. The ratio of the tangential to the normal
spring constant is set tokτ /kη= 1/3 and the friction coefficient toµ= 106, thus eliminating
sliding of the surfaces. The above choice of the spring constants in the normal and tangential
directions means that for an elastic(cη= cτ = 0) and rough(µ=∞) binary collision, the
collision frequency in the normal direction is equal to the collision frequency in the tangential
direction (neglecting any effect of the disc overlap). This means that, when the particles
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separate at the end of the collision, the tangential spring is unloaded at the same time and
no energy is lost.

For e< 1 and a finite overlap, the tangential spring stiffness is still chosen in the same
way. Hence, there is a very small additional energy loss, as the energy that is still stored
in this spring at the time of separation in the normal direction is not converted back into
particle motion. Here, we choose the inelasticity to bee= 0.95.

The inelasticityedefines the damping coefficientcη of the normal spring via (23). As we
have no rule for setting the damping coefficientcτ in the tangential direction, we take

cτ = cη

√
kτ
kη
, (36)

which relatescτ to kτ and e in the same manner as that forcη in (23). However, the
corresponding restitution coefficientβ is smaller thane, since the tangential spring is
still loaded when the particles separate. Fore= 0.95, the above ratio of the spring constant
(numerically) leads toβ ≈ 0.915.As the friction coefficient is chosen very high,β is constant
for all pre-collisional velocities.

The constant shear velocities of the walls are set to be the initial most probable particle
speedc0. All velocities are normalized byc0. The positionx in the spanwise direction across
the shear flow is normalized to the initial mean free pathλ0. Other variables are normalized
accordingly.

The collision kernelk(·) of the collision operator and the pair correlation are here taken
as those from hard disc theory, i.e.,k2d(v21 ·η)= 2πa(v21 ·η)θ(v21 ·η) andh(2)2d as in (32).

4.5. Comparison of DEM and FPM flows in 2d

After the initial transient regime, stationary profiles develop. The mean overlap is around
0.8% and hence the soft particles behave like hard ones. The bulk velocityuy parallel to the
walls is shown in Fig. 5 for both methods. The profiles agree very closely. Both curves show

FIG. 5. Mean velocity profileuy parallel to the walls for the FPM and the DEM, both for a 2d velocity space.
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FIG. 6. Mean particle rotation profileωz shows good agreement for the FPM and the DEM in 2d.

the same subtle change in the flow at the distance of one particle diameter from the walls,
indicating the existence of a boundary layer. The boundary layer is also clearly visible in
the density profiles, which is discussed later on.

For the spinωz we also find a good agreement; see Fig. 6. In the middle of the flow field,
both methods give the same mean spin. Close to the wall minor differences occur, where
the DEM profile is slightly lower than the FPM profile. It is not clear which one is more
correct.

In Fig. 7 the density profiles show a highly damped oscillation close to the wall which
is characteristic of dense gases [15]. The reason for this is that some part of the surface of

FIG. 7. Density profiles for the FPM and the DEM, both for a 2d velocity space.
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FIG. 8. Energy profiles for the FPM and the DEM, both for a 2d velocity space.

a particle close to the wall is shielded from collision. Hence, particles which are situated
close to the wall are pushed even closer against it; they hardly get a chance to reenter the
flow. The large increase in density close to the wall with a less dense zone separating it from
the central uniform density core is a distinctive feature of dense particle ensembles. The
variation of the density occurs in a region of the order of a particle diameter and becomes
smaller asν0→ 0. In the Boltzmann limit the density becomes spatially uniform.

Again, the density profiles of both the DEM and the FPM agree very well. The only
significant, but still small difference between them is the local maximum in the FPM
solution which lies just inside 2a from the walls. The reason for this is likely to be that the
equilibrium pair correlationh(2) has been used close to the walls, thus neglecting changes
that are known to occur inh(2) close to the walls; see [36].

The energy profiles are shown in Fig. 8 and compare excellently. The total energyetot is
defined as

etot = ev + ew + 1
2mu2+ 1

2 I ω̄2, (37)

which is the sum of the inner and macroscopic energies. All the energy profiles are scaled
by 3

4mc2
0, which is the inner translational energy for a hard sphere gas with most probable

speedc0. The inner energy profiles are close to relaxation, in the sense that the inner energy
is equi-partitioned over all three degrees of freedom,ev ≈ 2eω. This is consistent with there
being two translational degrees of freedom but only one rotational degree of freedom. This
means that the amplitudes of the velocity fluctuations are the same in both spatial directions
and also for the spin.

The distribution of the inner energy between the translational and the rotational forms
is already well known in the homogeneous case [6, 21]. In the following we compare each
of the two degrees of freedom of the inner translational energiesevx andevy to the inner
rotational energyeω. Here,evx denotes the degree of freedom with respect to the velocity
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FIG. 9. Ratio of inner translational energy for each degree of freedomevx andevy divided by the inner rotational
energyeω for the 2d FPM. The solid line is the corresponding homogeneous ratio, the dashed line the ratio for a
uniform shear flow.

component normal to the walls andevy that with respect to the velocity component parallel
to the walls and we haveev = evx + evy. In Fig. 9 it can be seen thatevy is larger thanevx

at any position between the walls. This is due to the shearing process: Shearing the walls
along they-axis is directly linked to producing rotation of the spheres. The influence of the
shearing onevx is only indirect, by collision of rotating particles, which is accompanied by
energy dissipation.

As a comparison, we present the theoretical ratio given by [21] ofevx = evy to eω in
the homogeneous case, shown by the solid line in Fig. 9. “Homogeneous” implies that
both degrees of freedom of the inner translational energy have the same value. It is clear
that due to the non-homogeneousness of the shear flow we cannot expect total agreement
with the homogeneous case. However, as the shear flow ratios are—in the middle of the
flow field—within a 10% range of the homogeneous ratio, the latter may be used as a first
approximation to the inhomogeneous case when away from the walls.

Whereas the homogeneous ratio in [21] or [16] also depends on the coefficient of tan-
gential restitutione, several authors [19, 23] have, for a uniform shear flow withD velocity
components (D= 2, 3), found an expression of the above which is independent ofe and of
the distance from the wall,

Deω
ev
= K (1+ β)

2K + 1− β , (38)

where K = 4I /ma2 is the dimensionless moment of inertia.K = 0.5 for homogeneous
discs. In Fig. 9 this ratio is shown as a dashed line, where equi-partitioning betweenevx and
evy is assumed.

FPM shows that bothevx andevy are much smaller close to the walls than in the interior
of the flow field, when compared to the rotational energyeω. This is due to the fact that the
energy-inducing process is the shearing of the walls, which immediately introduces further
rotation to the particles close to the wall and hence increases their rotational energy. The
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farther from the walls, the larger the translational energy compared to the rotational energy.
Yet, neither of its two linear components reaches the value given by the uniform shear flow,
but only comes within a 10% range.

In contrast to the assumptions of energy-partitioning in the homogeneous and the uniform
shear flow cases, our simulations clearly show that the inner translational energyev is not
equi-partitioned among its two components, which explains why Eq. (38) may only be used
as an approximate formula for the present test case.

A comparison of DEM and FPM shows that in the 2d case, they lead to the same flow
pattern, density profile, and macroscopic moments, with only very small differences. In the
following we compare the FPM in a 3d velocity space to the 2d DEM and see that, although
some differences are noticeable, both methods qualitatively deliver the same results.

4.6. Comparison of 3D FPM and 2D DEM

In a comparison of the FPM method operating on a velocity space with three translational
and three rotational degrees of freedom, the proper choice of the number densitiesn2d and
n3d (or solid fractionsν2d andν3d) in the 2d and 3d test cases is of high importance.

The geometric considerations of 2d close packing establish an upper bound for the solid
fraction of ν2d ≤ ν2d,max= (

√
3/6) π ≈ 0.907. Similarly, the hexagonal close packing in

3d yieldsν3d ≤ ν3d,max≈ 0.74. The kinetic granular flow equation (1) is not valid for solid
fractions close to the maximal solid fraction. However, the different maximal solid fractions
for two and three dimensions show that it is not sensible to simply setν2d= ν3d in the 2d
and 3d simulations and still expect similar results.

In the previous section we saw that when the mean free pathλ is of the order of the
diametera of the spheres, the density profile develops a peak close to each wall. This
phenomenon is independent of the spatial dimension; hence we assume that similar (but
not equal) density profiles are obtained, if

λ2d

a
= λ3d

a
. (39)

Using Eqs. (30) and (31), we find

ν2dh(2)2d (ν2d)= 3
4πν3dh(2)3d (ν3d). (40)

In particular, forν3d= 0.1 the diameter of a sphere isa≈ 1.106λ3d. Using (40), the corre-
sponding solid fraction for a 2d translational velocity space isν2d≈ 0.213. For each scheme
the distance between the walls is set to 10λ+a. This guarantees that both schemes will
develop the characteristic density peaks close to the walls. However, we cannot expect that
they will be identical. The reason for this becomes clear when we consider the energy
distribution in the system. The inner translational energyev is responsible for the collision
frequency. If the inner energies were totally relaxed, then the total inner energy would be
evenly distributed over all degrees of freedom. For this DEM implementation this means
that the inner translational energyev is twice the inner rotational energyeω (as the trans-
lational velocities are 2d but the spin is only 1d). On the other hand, in the FPM method
ev = eω, since there are three translational and three rotational degrees of freedom. The
partitionings of the total inner energies to the various degrees of freedom are different for
the two schemes and hence the collision frequencies are different as well.
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FIG. 10. Energy profiles for the 3d FPM and the 2d DEM.

Deviations in the energy profiles produce deviations in the density profiles because the
particles accumulate in the “colder” central core of the shear flow.

The stationary profiles for the bulk velocity and the spin again agree very well for these
two methods, despite the different velocity spaces in which they are operating. The curves
are not shown here since the 3d FPM profiles are essentially the same as the 2d profiles,
given in Figs. 5 and 6.

As mentioned above, different dimensions of the velocity spaces mean that we cannot
expect identical energy profiles for the two methods. Figure 10 shows the profiles of the
total energyetot, as defined in (37), the inner translational energyev, and the inner rotational
energyeω. All the energy profiles are scaled to3

4mc2
0, which is the inner translational energy

for a hard sphere gas with most probable speedc0.
The inner energiesev andeω of the FPM are very close to each other. As these energy

forms have the same number of degrees of freedom, namely three, the profiles show that
the flow is nearly relaxed. The inner energies found in 2d are qualitatively very similar to
those found in 3d.

The difference between theev andeω profiles for the FPM is larger close to the boundary.
This is due to the fact that the shearing of the walls adds energy to the flow in this region
and the roughness of the particles then produces large changes of the spin leading to higher
inner rotational energy in this region.

The inner energy profiles of the DEM are also close to relaxation withev ≈ 2eω, after
taking account of the differing number of degrees of freedom. As with the FPM,eω has a
local maximum close to the wall.

The total energy profile derived from the FPM is around 15% lower than that derived
from the respective DEM profile. Dimensional differences, which were described earlier,
again produce this deviation in magnitude. Importantly, the shapes of the energy profiles
are very similar.



20 POPKEN AND CLEARY

FIG. 11. Density profiles for the 3d FPM and the 2d DEM.

The differences in the inner translational energies between the two methods naturally lead
to deviations in the number density profiles, shown in Fig. 11. The gradient of total inner
energy in the boundary layers is slightly larger for the FPM than for the DEM. This leads
to a deeper U shape for the inner energy with relatively lower levels of inner energy in the
center of the channel for the FPM. Lower inner energy means lower collision rates, leading to
smaller particle collisional pressures and therefore higher densities. This is clearly visible in
Fig. 11 by the slightly higher central densities and slightly lower boundary layer densities
for the FPM. The differences in the inner energy profiles have caused more particles to
accumulate in “colder” central regions of the flow.

The differences in the energy profiles are not the only reason for the differences in the
density profiles. Here again, the differences in the dimensions have an important influence
on the profiles. However, the two profiles are qualitatively similar and show the peak in
density at the boundary of the flow domain and a minimum at the distance of a diameter.

The comparison of DEM and FPM has shown that they lead to similar macroscopic
moments, with only small differences. The dimension of the velocity space plays a modest
but important role in the distribution of the inner energy between the various degrees
of freedom and thus on the energy and density profiles. The fact that the present DEM
implementation only uses a reduced velocity space has to be kept in mind if industrial
problems are modelled. The closeness of the velocity and density profiles, however, suggests
that the use of the 2d DEM to model 1d and 2d granular flows is unlikely to introduce
significant errors.

In the next section, computational times of the two methods are compared. It is shown
that, for dilute and moderately dense ensembles, the FPM is much faster than the DEM.

4.7. Comparison of Computation Times

To determine the efficiency of the DEM and the FPM, we consider the CPU-time that is
consumed for the simulation of a time interval of length1T . This certainly depends on the
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number of particles in the system. Where the DEM for the Couette flow delivers reasonable
results for as few as 10 particles, the FPM needs at least a handful of particles in every cell
with lengthl . The cell size for the FPM depends on the mean free pathλ becausel <λ. If
the distance between the walls in the Couette flow is 10λ, and the profiles are to be evaluated
at, say, 100 different positions or at every 1/10 of the mean free path, then the FPM needs
at least a few hundred particles, where the DEM still uses 10. However, the “noise” of the
profiles also depends on the number of particles that are used for the averaging at a position
or within a cell. For an objective comparison of efficiency, we compare the CPU-times for
the simulation ofN particles per scaled time intervalT .

The DEM usually does not use more than a few thousand particles for its simulation.
Here we choose a maximum number of 1000 discs.

In the following, four different settings are considered, namely two for the DEM, using
a parameter ratio ofkη/m= 10,416 and 1042. The resulting energy profiles are such that
the mean overlap is around 0.8% and 2.4%, respectively. The two settings for the FPM are
distinguished by the calculation of the post-collisional velocities. In a first run, the post-
collisional velocities are determined by solving the force equations for the spring–dashpot
model, as is done in the DEM, i.e., by a simple explicit scheme solving the system of
ordinary differential equations, Eqs. (24)–(26). In a second run, the hard sphere collision
model for the FPM with

e= 0.95, we set β = 0.915, (41)

as computed from the spring–dashpot model with friction coefficientµ= 106.
All runs simulate a Couette flow at a solid fractionν3d= 0.1 for the FPM and matching

ν2d= 0.213 for the DEM. The profiles are evaluated at 100 different positions of the total
distanceL = 10λ+a between the walls.

The CPU-times per 100 time units simulation time running on a DEC 3000/600 are given
in Fig. 12. We vary the number of particles in this DEM by changing the length of the
control volume along the plates, while keeping the number density constant.

FIG. 12. CPU-time for 100 time units simulation time, dependent on the number of particles.
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The uppermost line, represented by◦, shows the CPU-time for the DEM with a parameter
ratio ofkη/m= 10,416 s−2, i.e., when the soft particle collisions are very close to hard sphere
collisions, as shown in Fig. 2. For more than 100 simulation particles, the dependence of
the CPU-time on the number of particles is almost linear.

If the parameter ratio is reduced tokη/m= 1042 s−2, the particle collisions are softer
and the time for a binary collision is a factor of

√
10. Hence, the time step is larger and

the CPU-time is reduced by this factor. We found that for a ratio ofkη/m= 1042 s−2, the
stationary profiles for the Couette flow do not vary more than 5% from the corresponding
profiles for “very hard soft collisions” withkη/m= 10,416 s−2. Hence, if minor deviations
are acceptable, one might also choose to run the DEM simulations with this larger time step.
The corresponding CPU-time, depending on the number of simulation particles, is given
by the line denoted byh in Fig. 12. For even smaller parameter ratioskη/m, the deviation
from the hard sphere profiles is profound and is therefore not considered here.

On the other hand, the FPM is much faster. The FPM simulating the binary spring–
dashpot encounter by solving the underlying soft particle collision model is denoted by×
in Fig. 12. It shows that the CPU-time is a factor of 5 faster than the CPU-time of the DEM
with parameter ratiokη/m= 1042 s−2, or a factor of 14 for a ratio ofkη/m= 10,416 s−2.

The FPM based on the hard sphere collision model is slightly faster again, see the line
denoted by the+ signs. The CPU-time is a factor of 6 to 18 faster than the above mentioned
DEM simulations. Of course, the hard sphere model with constantβ is not particularly
well-suited, if the friction coefficientµ is close to one, since thenβ actually depends on the
pre-collisional velocities.

A word of caution is necessary with such comparisons. Not only do the DEM and FPM
have different velocity spaces and therefore different calculation costs, but the implemen-
tations also use different languages. The DEM is written in Fortran 77, whereas the FPM
implementation is a C-code. Different high level languages may, for the same problem,
result in different computation times. This difference also depends on the platform. In ad-
dition, the DEM code has been optimized for dense flows and would be faster if optimized
for modest density flows such as these. Despite these factors which will affect the specific
speed factor differences, the underlying shapes of these curves will not be affected and we
expect the FPM to still be significantly faster.

If the solid fractionν3d increases, the mean free path becomes smaller. As a conse-
quence, the discretization of the FPM has to be refined as well. In the FPM, forν3d= 0.1
and L = 10λ3d+a, the mean free path is split into a fixed number of cells. (To improve
readability, the subscript 3d is omitted in the following andν0 is set toν0= 0.1.) If the gap
between the walls is kept constant withL = 10λ+a, whereν= ν0, then, for an increasing
solid fraction, the number of cells in the whole domain increases also. For instance,ν= 0.2
givesL ≈ 27λ+a, increasing the number of cells by a factor of 2.7.

The DEM does not have to resolve the mean free path; i.e., the number of particles
necessary for the scheme is independent of the solid fraction. Hence, the CPU-time per
unit time and for a fixed number of particles is nearly constant with respect to the solid
fraction (it increases only slightly, since the number of neighbours increases with the solid
fraction).

In Fig. 13, the CPU-times of the two schemes are compared for a varying 3d solid fraction
(the corresponding 2d solid fraction for the DEM is computed via (40)). The solid lines are
the interpolated curves. One thousand particles have been used for the DEM for all solid
fractions. For the FPM, 1000 particles are used forν= ν0. For higher solid fractions, the



KINETIC THEORY AND DISCRETE ELEMENT SCHEMES 23

FIG. 13. CPU-time for 100 s simulation time with varying solid fractionν3d.

number of cells increases. If the number of particles per cell is kept constant in the FPM to
maintain consistent accuracy, the total number of particles in the system grows by a factor
νh(2)(ν)/ν0h(2)(ν0).

In the moderately dense stage forν <0.32, the FPM is always faster than the current
DEM, even for the softer spheres withkη/m= 1042 s−2. For higher solid fractions in the
transition regime 0.32<ν <0.46, the FPM, based on the hard sphere collision, is still
faster than the DEM withkη/m= 10416 s−2, but slower than the DEM using the softer
collisions. Forν >0.46, this DEM is finally always faster than the FPM. The limits in
the inequalities quoted here are approximate in nature. This last range is a very important
regime since all applications which include gravity have solid fractions which exceed this
limit. These applications are those for which DEM becomes a viable and preferred option
for modelling technique. The inclusion of more degrees of freedom, such as particle size,
shape, and density distributions, also strongly favours the DEM as the dimension of the
space in which the FPM scheme operates rises strongly and sufficient particles must be
available to statistically sample all these dimensions.

5. CONCLUSIONS

A particle scheme for solving kinetic granular flow equations, based on finite pointset
methods, and a discrete element method were compared using a homogeneous granular
flow and a granular Couette flow. The macroscopic flow quantities (velocity, density, and
inner energy profiles) given by the two methods agree very closely for simulations in
two dimensions. Three dimensional kinetic FPM solutions for the Couette flow were also
compared with the two dimensional DEM, revealing qualitatively similar behaviours. The
flow velocity and density profiles are quantitatively close, with moderate differences in
the magnitudes of the inner energies. Most of the quantitative differences result from the
difference in the dimensionalities of the velocity spaces of the two solutions. The inner
energies per degree of freedom were very similar for this case.
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It is shown that the important criterion for making valid comparisons between two and
three dimensional solutions is that the mean free path lengths of the two flows be the same.
Matching the solid fractions does not lead to valid comparisons, because the dynamics can
then be quite different.

This suggests that the use of two dimensional simulations to solve for granular flows
which are one or two dimensional in space gives results that are close to those obtained
using a three dimensional scheme. This is important for the interpretation of the widespread
two dimensional DEM simulations of geophysical and industrial granular flows.

For dilute and moderately dense particle ensembles, the FPM is faster than the discrete
element method. For dense flows or flows with complex geometries or complex particle
distributions the FPM becomes increasingly expensive and the DEM becomes much more
efficient.
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