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Discrete element based simulations of granular flow in a 2d velocity space are
compared with a particle code that solves kinetic granular flow equations in two and
three dimensions. The binary collisions of the latter are governed by the same forces
as those governing the discrete elements. Both methods are applied to a granular
shear flow of equally sized discs and spheres. The two dimensional implementation
of the kinetic approach shows excellent agreement with the results of the discrete
element simulations. During change to a three dimensional velocity space, the qual-
itative features of the flow are maintained. However, some flow properties change
quantitatively. (© 1999 Academic Press
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1. INTRODUCTION

Flows of granular materials are widespread in our environment, for example, in na
phenomena like avalanches or sand storms, or in industrial and technological proc
where bulk materials like grains, coal, ore, etc., are transported, screened, or crushec

The two major regimes in which motion of granular media occurs are rapid and <
flows. The latter are characterized by long duration contacts between particles during
motion. In this regime, bulk properties of moving granular media are controlled by
Coulomb inter-particle friction forces. In rapid flows on the other hand, particles m
freely between successive collisions. Transfer of particle kinetic energy and momel
within a rapidly flowing granular medium occurs during these collisions and they gov
the transport properties.
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2 POPKEN AND CLEARY

Particle impacts within granular materials are related to kinetic energy losses, associ
with the inelasticity of collisions and the surface roughness. Hence, a constant sourc
mechanical energy is needed to sustain the motion of granular material.

Different approaches to modelling the dynamics of granular flow lead to different leve
of description:

1. The microscopic leveBimulations of granular flow as an ensemble of a large numb
of rigid bodies are generally deterministic models. Every “real” particle is represented
exactly one “virtual” particle in a computer code. Particles move in a potential field al
their interactions are defined by different models. The Lennard-Jones potential lead
molecular dynamics simulations [1] while linear or Hertzian forces lead to soft partic
descrete element methods [3, 40, 10, 11]. Details of this method are described later in
paper. Recent applications of such methods include grinding ballmills [12], hoppers |3
particle breakage [31], granular conductivity [18], the filling of dragline buckets [13], ar
many more.

2. The mesoscopic levebtarting from arN-particle system described by the Liouville
equation, a system of equations fparticle systemss(< N) may be derived. This so-
called BBGKY hierarchy leads—in the limkl — oo and under certain assumptions—to
a kinetic equation for the one-particle density function in the phase space. A rigore
treatment for hard spheres yields the well-known Boltzmann equation. In the following
derivative [16, 29] of the Boltzmann equation is considered, which takes into account
dense character of granular flows as well as the energy loss at impact.

3. The macroscopic leveThe highest level of description consists of macroscopic fiel
equations, generally partial differential equations. This is the more conventional scale
simulations but will not be considered in this work. Macroscopic equations that are
tablished from the same granular flow equation used in the present paper can be four
[16]. For the derivation of the relevant moments in a shear flow as well as comparison
experiments see [22].

The most common approach to the solution of kinetic equations on the mesoscopic s
is the Direct Monte Carlo Simulation (DSMC) method, originally developed for rarefie
gases [4]. It is based on the idea of simulating large particle systems using a small nun
of representative particles.

A second approach to rarefied gases has been designed to numerically solve
Boltzmann equation [5]. It has been shown that the two methods are equivalent in tt
results [39].

Especially for the DSMC approach there exist variations to treat dense gases [2, 15,
The present paper presents a mathematically sound method of numerically solving
kinetic granular flow equation given below. Asitis based on the approximation of continuc
measures by discrete measures, this method is known as the Finite Pointset Method (F
see, e.g., [27].

One of the essential characteristics of the kinetic ansatz is the binary type of collisions;
exactly two particles are involved in any particle collision. After contact, all particles mu
separate from each other again. Permanent or long-term contact between any two partic
difficult to consider for the kinetic framework used to describe granular flows in this pap
Therefore, the problems considered here are set in the rapid flow regime. Furtherm
gravity is neglected. A simple test case may already show differences between simulat
on the microscopic level and on the mesoscopic level; see, e.g., [26, 20]. Good agreet
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between the two levels can be found in [15], where a dense gas close to a solid w:
considered.

In this paper, the two levels of description are compared within a test case that is 1
space, namely a Couette flow at a moderate packing density. Granular material is enc
between two parallel walls. External energy is introduced by shearing the walls in oppc
directions (Couette flow), where the distance between the walls remains constant.
shears the granular material, setting up non-linear velocity and density distributions.
this test case a comparison of DEM with theory can be found in [7].

The present work is organized as follows. In Section 2, an introduction to the kine
formulation is given. A particle scheme to determine a solution of the kinetic equatiol
outlined. The soft particle discrete element method (DEM) is introduced in Section 3
first simulation of a spatially homogeneous case gives the relationship between the 1
free path and the solid fraction for different “soft” collision parameters. In Section 4 b
methods are applied to the Couette flow and the results compared, when the velocity ¢
is two dimensional. Comparisons of the 3d kinetic particle scheme and the 2d DEM
also made. Finally, the two methods are compared with respect to their calculation tirr

2. FORMULATION OF THE KINETIC APPROACH TO GRANULAR FLOW

A derivative of the Enskog [14] equation for dense gases is the following kinetic equa
for granular flows [16]. It refers to a densifyin phase space, such thiat= f (t, X, v, w) is
a scalar function of timg positionx € A c R, velocityv € R?, and spinw € R3. We denote
= (v, w) as the vector including both velocity and spin. The particles are considere
be spheres with diametar Also, we do not restrict the model to energy conserving partic
encounters. The kinetic equation for granular flow is then

%—i—v Vi =J(f f), 1)

J(f, f)_/ k(g - mh@(n(t,x — &n)) ft, x, w") f (t, x — an, W) dr(n) dw
ROx 2

—/ k(va1 - mh@ (n(t,x — 3n)) f (t, x, w) f (t, x — an, w.) dr(n) dw,
ROx &

together with the velocity transformation
(W, w,) =TWw’,w), wherew, = (v,, w,), W = V', "), etc

The vectorv,; = v, — Vv is the relative velocity of two colliding particles; is a unit
vector in the direction of the line of centers of two spheres of dianze¢the time of their
impact, andk(n) is the probability measure on the unit sph&e The collision integral
J(f, f) preserves the same binary structure of the corresponding Boltzmann term, bu
colliding spheres occupy different positions in space. The collision frequency is modi
by the factoth®® which approximates the pair correlation function [33].

In the framework of the so-called Standard Enskog Theory (SE®),is simply set
equal to the equilibrium pair correlation evaluated at the point of contact (see [32] for
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example). From the Carnahan and Starling [8] approximation of the equation of state,
total equilibrium pair correlation in a 3d position space is found to be

2—v

hg (n) = TR

)
Here,v denotes the solid fraction of the medium; ewg= gna3 for hard spheres, where
is the number density. In the limit— 0, the correlatiom?(v) tends to one.

Up to now, it is not clear which equation of state is the most suitable one for granu
flow. As we want to make clear the relation of (1) to the Enskog equation, in this wo
the pair correlation is always taken from SET. For a survey of different pair correlations
granular flow see, e.g., Goldshtedhal. [17].

The factork(-) in (1) is the collision kernel for hard spherdgy,; - 1) =4ma?(Vvoy -
)0 (V21 - 1), whereg is the Heaviside function.

The velocity transformation conserves linear and angular momenta; yet in order to f
the post-collisional velocitieév, w,) =T (W”, w}), one needs further relations. For hard
spheres, where the binary collisions are instantaneous, one commonly relates the
collisional relative velocity to the pre-collisional one [16](I; - 7) > 0, then the relative
velocity at the contact point before collision is given by

Go1 = (Vi = §m X w,) = (V4 51 x w) = vym + Ve, (3)

wherev,, = (V21 - ) is the modulus of the normal component of the relative velocity an
V. is its tangential component,

Ve = Vo1 — (Va1 - 1) — 51 X (W + wy). (4)
After collision the velocity components are
v

= —ev,, (5)
= —BVy, (6)

Qs s~

\Y

where the two coefficients and 8 characterize the collision processis the coefficient
of restitutionor inelasticity in the normal direction, & e<1, andg is the roughness
coefficient in the tangential direction,1 < 8 < 1. For perfectly rough spheres one leas
B =1,whereag=1, 8 = —1for perfectly smooth spheres. These post-collisional velocitie
are then uniquely determined [16].

With the help of the one-particle distributidi(t, X, w), the macroscopic moments 6f
are obtained: the number densitythe bulk velocityu, the inner translational energy,
and the inner rotational energy;:

n(t,x):/f(t,x,w)dw, @)

u(t, x) = %/vf(t,x, w) dw, (8)
m 2

e, x) = %/|v—u| f(t, x, w) dw, 9)

e,(t,x) = % / lw — @] (t, X, w) dw. (10)

In the above] denotes the moment of inertia of a particle anthe mean spin.
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2.1. A Particle Method for the Kinetic Granular Flow Equation

The solution method for the kinetic granular flow equation (1) is explained in detail
[29]. It is a derivative of the finite pointset method (FPM) developed at the University
Kaiserslautern to solve the Boltzmann equation. The following FPM is based on the t
splitting of (1).

Introducing two fractional time steps one solves first the free transport equatiqnity] [0

of
—+v-V,f=0. 11
T 11)
If the particle approximation of the initial valui(0, x, w) of (11) is given by some discrete
measurehlT Z}\‘zl dx;dw;,» then the time evolution of the particle ensemble is simply

N

1

N D S ratVida,. (12)
j=1

Boundary conditions are also taken into account during the free flow. Collisions with
wall are modelled via the same laws and parameters as a regular particle—particle coll
see Egs. (5)—(6).

In a second step the time dependent kinetic granular equation without free flow,

S I ), (13)

is solved. To simulate Eq. (13) via a particle method, an explicit Euler step is used
Eq. (13) is written in its discretized form,

f(At,x,w) = f(0,x,w) + J[f, f](0, x, w). (14)

f (At, x, w) is then used in the next time step as the new initial condition for the free flc
Equation (14) is now considered in a weak formulation; i.e., it is multiplied by a continuc
test functionp: A x R® — R and integrated over the phase-space R°®. This leads to

//(P(X, w) f (At, X, w) dw dx

A xRS

1
= Hh@ (. / o r @
= //// [Atk()h ()(p(x’WH(n(o,x—an) Atk()h ())w(x,W)}

AxROxROx 2

x (0, x,w)f(0,x —an, w,) dx(n) dw, dwdx. (15)

In such a particle scheme, if one particle is located at a positithen in general no particle

can be found ax — an, the position of the collision partner. Therefore, a collision partn
is allowed to be at a positior, close tox — an. This idea is known as mollifying and

details are contained in [37, 28]. To solve the mollified version of Eq. (15) we need
approximation of the product measure,

f (0, x, w) f (0, X, w,) ds(n) dw, dx, dw dx, (16)
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given only an approximation of (0, X, w) dw dx [27]. Then one can compute the time
evolution of the measure due to (15): The factor At k(-)h®(-)n(0, x — an) may be
interpreted as the probability of a dummy collision, keeping the old velocities and spi
Atk(Hh@()n(0,x —an) is the probability of a real collision, changingv, w,) —
(w', w,) = T (w, w,). This is also the restriction on the step. Equation (15) is only sensib
in the sense of measures, if the time step fulfills

Atk(Hh@ () < 17)

n, .)

for all timest, all relative velocities/,;, and all positionx. This means that the time step
is determined by the maximum inner translational enexggind the maximum density
that might occur in the flow.

Inthe presence of a boundary, e.g., two parallel walls as in the shear flow example late
a number of different boundary conditions are known. The diffuse reflection is commoi
used in rarefied gas dynamics. It essentially means that any particle hitting the surfac
scattered back randomly and independently of the velocity vector with which it hit tl
surface; see, e.g., [9].

As the scope of application in the present paper is focused on particles which are la
than molecules, the specular reflection is used in the following. This means that at collis
the wall is viewed as another sphere of certain velocity (the wall is allowed to move or sh
inthe Couette flow case) and spin (usually zero spin). Then the same velocity transforma
as that in (5)—(6) is applied to the particle; the velocity of the wall stays constant during
collision.

The accuracy of the FPM has, in the rarefied regime, successfully been checked ag
some results of Bird’s [4] well known DSMC-code; see, e.g., [38].

A word on the range of validity of the FPM: In the limit a — 0, i.e., in the rarefied
regime, Eqg. (1) converges to Boltzmann equation. The efficiency and accuracy of the F
in this limit has been treated by many different authors; see, e.g., [5, 27, 38]. For
increasingly large solid fractiofv > 0.3), the results of the FPM disagree more and mort
with the results obtained by discrete element methods. This is mainly due to the molec
chaos assumption, which, with increasing solid fraction, becomes more and more unt
In the test case described later on, we consider a solid fraction oh@ﬂ# 0.1, where the
molecular chaos assumption is sufficiently corrected by the additional f@dm Eq. (1).

In the present test case, the inner translational eregyt a positiork with a numerical
density ofN particles per unit length is found to converge at the ord€ @fl —*) toward its
limiting energy densitg>° (convergence it *°-space). This is described in Subsection 4.2

For more details about the FPM we refer to the above cited references.

3. FORMULATION OF THE DISCRETE ELEMENT MODEL FOR GRANULAR FLOW

Modelling a force that represents an inelastic collision requires at least two terms:
pulsion and some sort of dissipation. The simplest force with the desired properties is
damped harmonic oscillator shown in Fig. 1.

The normal force=, has a spring componentto provide the repulsive force that pushes!
particles apart, and a dashpot that provides dissipation, resulting in an effective coeffic
of restitution. The tangential component is again modelled by a spring and a dashpot; y
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Fy

FIG. 1. The spring—dashpot model. The normal foFgeand the tangential forcE, both use a spring and a
dashpot. The tangential force is also limited by friction.

is subject to the frictional limit of. F,,, wherep is the dynamic friction coefficient. Contact
force models are discussed in review articles [3, 40]. In the following, only mono-dispe
spheres are considered, where the mass is denotedaloygl the moment of inertia bly.

The equations for the forces are

Normal force:  F, = —c,v, — k,& (18)
t
Tangential force: F,

—min{M|Fn|» ke [ v, dt’_,_crvf}, (19)

to
wherec,, ¢, > 0 are the normal and the tangential damping coefficients (representing
dashpots),, k; > 0 are the normal and tangential spring constantsyand is the friction
coefficient.v,, v, are the (scalar) velocities in the normal and tangential directions w
v,(0) > 0 andv, (0) > 0.

The spring elongatiog > 0 is the actual overlap of the two particles. The spring in tt
tangential direction is loaded by the relative tangential movement of the particles’ surfa
given by integration ob, over the time from the onséj of the collision until timet. The
initial conditions aret (0) =0 andv,(0) = V21 - n > 0, wherev,; =v; —vq is the relative
velocity between two colliding particles at positiopsandx; at the beginning of a collision.
The unit vectom points fromx; to x3.

Newton’s law,

mé =F,, (20)

wherem, =m/2 is the reduced mass, can easily be solved vkl;;encﬁ/4m* to give

%

_ v, (0) G .
&) = , exp( om t)sm(yt), (21)

with

Yy =4 — — L. (22)
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The encounter timg that elapses during a collisiontis=r/y . If an inelasticitye € [0, 1]
as defined in (5) is given, them is found to be

In(e)

¢, = —2/mk . ——® (23)

72+ In(e)?

with In(-) the natural logarithm.

The scalar forceb, andF, still have to be transformed into the global coordinate systen
The resulting force of a particlg acting on particlé in the global coordinate system is
denoted byFj;.

The equations of motion for the particles are then the following 1, 2 for a binary
collision).

Xi = Vi (24)
. 1
Vi = EJZFji (25)
. 1
wi:TZMji' (26)
j

To find the resulting forceB;; we assume that the unit vectgrpoints fromx; to x;. The
unit vectorr is orthogonal tay throughout a collision, initially pointing in the direction of
the tangential velocity vectar,; see Eq. (4).

The forceF;; is composed of, andF,, the relative forces in the binary collision, via

-Fn+F. 7, for |x; —xj| <aandi # j,
Fji _ { i T X J| = # ] (27)
0, else
It follows, thatF;; = —F;j holds. The torque is defined as
a
Mji =—§Fr(TIXT), (28)
andM i = Mij .

The choices of the tangential parameterandc, determine the frequency of the tangen-
tial oscillation. Yet, the tangential force in (19) is coupled to the normal force (both forc
accelerate the centres of mass; hence the change @fo depends oft,). A general
analytic solution to the system (24)—(26) is not known to us.

Since the encounter tintg > 0 is now finite, collisions of three or more particles in a
flow field are possible. The larger the encounter time, the larger the number of triple
quadruple collisions.

In the present code, the equations of motion (24)—(26) are solved by an explicit til
stepping scheme, where the time stefpis set to

t,

At = —.
25

(29)

Before the above methods are applied to the Couette flow test case, the DEM is apy
to the homogeneous case. By tracing the mean free path, the pair correlation functic
determined for different spring parameters.



KINETIC THEORY AND DISCRETE ELEMENT SCHEMES 9

3.1. Application of the 2D-DEM to the Homogeneous Case

A characteristic feature of dense hard sphere gases is that, for a solid frastiOnthe
mean free path is no longer proportional to the inverse of the number density of the flo
An additional factor comes into play, which originates in the pair correlation evaluatec
the contact point of a binary collision.

For a gas at equilibrium, the mean free paths are known to be

m:%, (30)
4nahyj (n)
1
Ay = —————=——. 31
% V2nrazh@ (n) 1)

To determine the equilibrium mean free path, knowledge of the pair correlation func
h®@, which is gained from the equation of state, is required. The equivalent of (2) in
case of hard discs [34] leads to

2 —
G = 50— (32)

wherev = Zan for discs.

Equation (30) is now used to check the DEM for a homogeneous flow of smooth elg
discs. Two problem sizes are used with 400 and 1000 discs, respectively. They are p
in a square box with periodic boundaries in each direction. The size of the box determ
the solid fraction. In these simulations the parameters of the soft particle collision mc
are set tk, = 10,000 N/m, the mass1=0.96 kg, andc, = u =0. The initial velocity of
the particles is such that the mean relative normal velocity vegtatefined by

v, = 1 (Vo1 1) f (V) f(v,) dnpdvdy,, (33)
N2

RZxR?x Sl+

is given asv,, &~ 0.59a/s, in the units of disc diameters per second. In the ab®Veis the
half unit circle with(voy - 17) > 0.

The resulting mean overlap of the binary collisions is around 0.9%; i.e., the collisi
are not very soft, but rather close to a hard disc collision. The maximal overlap encount
in the simulations is less than 5%. The mean free path between collisions is calcul
and gives the pair correlation from (30). In Fig. 2, the 2d pair correlation from the DE
simulation (denoted by) is compared to the 2d hard disc pair correlation (the solid lint
calculated using Eq. (32). This is the instantaneous hard collision lirkjt as oo.

The agreement of these data with those of the hard disc correlation is very good, with
a small deviation appearing for high solid fractiong > 0.55. The deviation increases
with solid fraction because an increasing proportion of particles are involved in collisi
at any time. A mean overlap of less than 1% is sufficient to ensure that results are clo
those of hard disc collisions.

Next, the mean free path is measured for softer collisions, when the mean particle ov
is 2.6% and 7.9% fok,/m= 1042 s2 andk,/m = 104 s2, respectively. In other words:
For a constant mass, decreasing the spring constépby a factor of 10 (thus softening the
spring) causes the mean particle overlap to increase by a factd@4£3,/10. The normal
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FIG. 2. The 2d correlation functiohy at contact for different mean overlaps.

relative velocityv,, is the same as that in the previous case. Table | shows the mean :
maximum soft particle overlaps obtained from the DEM for various parameter kafios

The corresponding correlation functions for the larger overlaps are shown in Fig. 2
denoted byt+ andsx. For an overlap of 2.6%, the difference between the soft and hard di
correlations is small for,q < 0.2, then increases with the solid fraction. For an overlap o
7.9% the soft disc correlation differs substantially from the hard particle correlation for:
but the lowest solid fractions.

Theoretically, the derivation of the mean free path in Eq. (30) is only valid for hai
disc potentials. But, as a first approximation, it gives suitable correlation functions for s
encounters. Decreasing the spring conskarimcreases the collision timg and therefore
the mean overlap. This produces more space for the other particles leading to an incr
in the mean free path and a corresponding decrease in the correlation function.

The mean overlap, which depends on the mean normal relative velecind the spring
to mass ratid, /m, is the essential parameter that determines how close the characteris
of a soft sphere flow are to those of a hard sphere flow. This confirms that the typical
overlap criterion used in DEM applications is adequate to ensure that the particles bel
as hard particles.

TABLE |
The Mean and the Maximal Overlap for Dif-
ferent Parameter Ratios and a Constant Mean
Relative Velocity v,; = 0.59/s

k,/m Mean overlap Maximal overlap
s? (%) (%)

10,416 0.9 5.0
1,042 2.6 15.2

104 7.9 56.7
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It is important to recall that for an increasing encounter timeriple and multi-body
collisions are more and more frequent. Hence, if the above correlation functions for
encounters are to be used in a kinetic formulation such as the kinetic granular flow equ:
for hard spheres, Eg. (1), one must check the validity of the binary collision ansatz
the following section we assume that the encounter timie small in comparison to the
mean time between collisions. We take this as an argument that the binary model is
sufficiently well-suited.

4. THE COMPARISON CASE: A GRANULAR COUETTE FLOW

A dense granular particle ensemble is situated between two parallel oppositely mo
plates. Without an energy source, the ensemble would converge toward a zero gra
temperature state. In a Couette flow, energy is constantly supplied to the system b
shearing. Figure 3 shows the Couette flow configuration used in these simulations. Par!
wall and particle—particle collisions are modelled according to the spring—dashpot m
(18)—(19). In subsequent simulations, both hard sphere and hard disc, the moment of ir
| is set to be the moment of inertia for distsz ma?/8, thus providing a constant base for
comparison.

4.1. Convergence to Steady State and Data Averaging

The particles are started with random positions and velocities with an average af 0.
The first flow regime is transient with the particles rearranging, exchanging momen
and energy, and evolving toward a steady state. A criterion is needed to determine \
the transient regime has ended and the profiles have become stationary. We have
that among the first and second moments, such as density, bulk velocity, bulk spin,

sheared
solid wall

sheared
solid wall

FIG. 3. The Couette flow configuration.
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05 700 1400 2100
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FIG. 4. Convergence of the mean inner energy with time.

inner energy, some of the profiles become stationary later than the others. In particular
transients of the inner energy vanish last for the Couette flow. Therefore, we calculate
spatial mean of the inner energy + e, and smooth it over a short length of time. The
time interval of averaging increases with time, thus reducing the influence of the noise
Fig. 4, the convergence for the FPM to steady state is shown. The time is scaled by the n
time between collisiont;,, which is the ratio of the mean free pathand the initial most
probable speed,. The mean of the sum & ande, is scaled tofimcf).

Here, the first averaging is done over 5 time units, then over 10, 15, 20, etc. This avera
is necessary to eliminate the noise in the inner energy that arises from the energy trar
between the particles and the energy of the springs in the collision model. After 1290 ti
units, the inner energy has sufficiently converged and the flow is considered to be statior

Data are not collected at every time step since the particles move only small distar
between time steps and thus these data are not highly correlatedt Aftee average time
between collisions, the particles have all moved to new positions and have experier
different collisions. The data used for averaging are therefore sampledtguime units
to ensure that these data are statistically uncorrelated.

The length of the averaging interval determines the number of sets of data used in
averaging. The average of the data at a specific time varies from the underlying asymp
flow by an amount which decreases with the number of datadEnotes the time at which
the flow field has become stationary, then the first averaging is over the intigrtai{ 10],
then over{s, ts + 20], [ts, ts + 40], and so on. LeN; denote the number of times at which
uncorrelated data are sampled. The standard deviation, which is a measure for the noi
the profiles, is then of the order of ¥N. In particular, in the following simulations the
averaging takes place over 5120 points in time, leading to maximum errors in the prof
of the order of 1.4%.

4.2. Numerical Order of Convergence for the FPM

The profiles of the stationary solution may vary slightly with the number of partiles
per cell used in the simulation. We found that the number density as well as the bulk velo
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is independent oN. However, second moments likg ande,, are, for initially N = 10 per
cell (using 10 cells to resolve the distance of one mean free path), around 10% lower
the respective profiles fad — oo.

To find the order of convergence of the latter profiles, we compare the stationary, ti
averaged energy profiles of the inner translational enejgylepending on the number of
particlesN per cell. If we assume that tHe™(A) norm of the difference o€\ and the
asymptotic solutior® converges with ordet for N — oo,

el — || . = O(NTH), (34)
then we define the numerical rate of convergekce

e’ — el

k:= log, (35)

# )
e — el
wherej is a natural number. From the simulations for the Couette flow a numerical rat
convergence df ~ 1 is found; i.e., foN = 100 particles, the energy profiéd is within a
1% range of the asymptotic solutieff.

4.3. Considerations on the Time Step

A critical point for an objective comparison of the two methods is the choice of the til
step. The time step in the FPM is, for a bounded collision kécaglonly dependent on the
inner energye, (t). If, for a proper comparison, the mean overlap in the DEM is to be ke
less than 1%, then the parameter r&gjom must be appropriate for the inner eneggyThe
higher thee,, the higher the,/m. Accordingly, the encounter tinig decreases. If larger
time steps (softer springs) are used for the DEM, not only does the particle overlap incre
leading to deterioration in the pair correlation function (see Fig. 2), but aberrant behav
such as the “detachment effect” and the “brake failure effect” begins to occur [35].

The time step for the DEM must accurately integrate the binary soft particle collis
(see Eq. (29)). For a parameter ratickgf m = 10,416 s2, the time step\ts of the spring—
dashpot model has to be approximately 40 times smaller than the timatgtepthe FPM.
This immense difference in the time steps is due to the main characteristics of both sche
Where the DEM has to integrate the equations of motion for all collisions in a determini
way, the FPM lets the particles move freely for some time (abg20 bf the mean time
between collisions) and determines the effects of collisions afterward, using probabil
means.

4.4, The Choice of Parameters for Comparison

For the DEM a set of 100 discs is used, while 10,000 particles are used for the FPM.
initial solid fraction is chosen agy =0.213 and the distance between the plates is set
L = 10a + a, so that the width of the flow field is 10 mean free paths.

Every collision in this DEM simulation dissipates energy according to the spring—dast
model with spring—mass ratik,/m=10,416. The ratio of the tangential to the norma
spring constant is settq / k, = 1/3 and the friction coefficient ta = 1P, thus eliminating
sliding of the surfaces. The above choice of the spring constants in the normal and tang
directions means that for an elast, = ¢, = 0) and rough(x = co) binary collision, the
collision frequency inthe normal direction is equal to the collision frequency in the tanger
direction (neglecting any effect of the disc overlap). This means that, when the parti
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separate at the end of the collision, the tangential spring is unloaded at the same time
no energy is lost.

Fore <1 and a finite overlap, the tangential spring stiffness is still chosen in the sal
way. Hence, there is a very small additional energy loss, as the energy that is still stc
in this spring at the time of separation in the normal direction is not converted back ir
particle motion. Here, we choose the inelasticity taebe0.95.

The inelasticitye defines the damping coefficieryt of the normal spring via (23). As we
have no rule for setting the damping coefficienin the tangential direction, we take

Cc =Cpy/ > (36)

which relatesc, to k; ande in the same manner as that foy in (23). However, the
corresponding restitution coefficiept is smaller thane, since the tangential spring is
still loaded when the particles separate. €er0.95, the above ratio of the spring constant
(numerically) leads tg ~ 0.915 As the friction coefficientis chosen very highis constant
for all pre-collisional velocities.

The constant shear velocities of the walls are set to be the initial most probable part
speedy. All velocities are normalized bg. The positiorx in the spanwise direction across
the shear flow is normalized to the initial mean free pattOther variables are normalized
accordingly.

The collision kernek(-) of the collision operator and the pair correlation are here take
as those from hard disc theory, iex (Va1 - 17) = 27 a(Va1 - 7)0 (Va1 - 1) andh? as in (32).

4.5. Comparison of DEM and FPM flows in 2d

After the initial transient regime, stationary profiles develop. The mean overlap is arot
0.8% and hence the soft particles behave like hard ones. The bulk velpgityallel to the
walls is shown in Fig. 5 for both methods. The profiles agree very closely. Both curves sh

0.67

0.4r

FIG.5. Mean velocity profileu, parallel to the walls for the FPM and the DEM, both for a 2d velocity space.
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FIG. 6. Mean particle rotation profile, shows good agreement for the FPM and the DEM in 2d.

the same subtle change in the flow at the distance of one particle diameter from the v
indicating the existence of a boundary layer. The boundary layer is also clearly visibl
the density profiles, which is discussed later on.

For the spirw, we also find a good agreement; see Fig. 6. In the middle of the flow fie
both methods give the same mean spin. Close to the wall minor differences occur, w
the DEM profile is slightly lower than the FPM profile. It is not clear which one is mol
correct.

In Fig. 7 the density profiles show a highly damped oscillation close to the wall whi
is characteristic of dense gases [15]. The reason for this is that some part of the surfa

1.5

1.3}

n/n

117

0.9}

FIG. 7. Density profiles for the FPM and the DEM, both for a 2d velocity space.
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FIG. 8. Energy profiles for the FPM and the DEM, both for a 2d velocity space.

a particle close to the wall is shielded from collision. Hence, particles which are situa
close to the wall are pushed even closer against it; they hardly get a chance to reente
flow. The large increase in density close to the wall with a less dense zone separating it f
the central uniform density core is a distinctive feature of dense particle ensembles.
variation of the density occurs in a region of the order of a particle diameter and becor
smaller agjy — 0. In the Boltzmann limit the density becomes spatially uniform.

Again, the density profiles of both the DEM and the FPM agree very well. The on
significant, but still small difference between them is the local maximum in the FP
solution which lies just inside&2from the walls. The reason for this is likely to be that the
equilibrium pair correlatiom® has been used close to the walls, thus neglecting chang
that are known to occur ih® close to the walls; see [36].

The energy profiles are shown in Fig. 8 and compare excellently. The total exgigy
defined as

Bot = & + €, + 3mu? + 11 w2, (37)

which is the sum of the inner and macroscopic energies. All the energy profiles are sc:
by %m%, which is the inner translational energy for a hard sphere gas with most proba
speed. The inner energy profiles are close to relaxation, in the sense that the inner ene
is equi-partitioned over all three degrees of freedent 2e,. This is consistent with there
being two translational degrees of freedom but only one rotational degree of freedom. T
means that the amplitudes of the velocity fluctuations are the same in both spatial direct
and also for the spin.

The distribution of the inner energy between the translational and the rotational for
is already well known in the homogeneous case [6, 21]. In the following we compare e
of the two degrees of freedom of the inner translational enemgieande,y to the inner
rotational energe,. Here,e,x denotes the degree of freedom with respect to the veloci
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FIG.9. Ratioofinnertranslational energy for each degree of freegjpiande,, divided by the inner rotational
energye, for the 2d FPM. The solid line is the corresponding homogeneous ratio, the dashed line the ratio
uniform shear flow.

component normal to the walls arg, that with respect to the velocity component paralle
to the walls and we have, = e, + €,y. In Fig. 9 it can be seen thayy is larger thare,y

at any position between the walls. This is due to the shearing process: Shearing the
along they-axis is directly linked to producing rotation of the spheres. The influence of t
shearing ore,y is only indirect, by collision of rotating particles, which is accompanied t
energy dissipation.

As a comparison, we present the theoretical ratio given by [2H,0f¢e,, to g, in
the homogeneous case, shown by the solid line in Fig. 9. “Homogeneous” implies
both degrees of freedom of the inner translational energy have the same value. It is
that due to the non-homogeneousness of the shear flow we cannot expect total agre
with the homogeneous case. However, as the shear flow ratios are—in the middle o
flow field—uwithin a 10% range of the homogeneous ratio, the latter may be used as a
approximation to the inhomogeneous case when away from the walls.

Whereas the homogeneous ratio in [21] or [16] also depends on the coefficient of
gential restitutiore, several authors [19, 23] have, for a uniform shear flow \lithelocity
componentsp = 2, 3), found an expression of the above which is independeatati of
the distance from the wall,

De, K(@d+p)
e, 2K+1-p’

(38)

where K =41 /m&? is the dimensionless moment of inertid.= 0.5 for homogeneous
discs. In Fig. 9 this ratio is shown as a dashed line, where equi-partitioning betyyeserd
ey is assumed.

FPM shows that both,x ande,, are much smaller close to the walls than in the interic
of the flow field, when compared to the rotational eneggyThis is due to the fact that the
energy-inducing process is the shearing of the walls, which immediately introduces fur
rotation to the particles close to the wall and hence increases their rotational energy.
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farther from the walls, the larger the translational energy compared to the rotational ene
Yet, neither of its two linear components reaches the value given by the uniform shear fl
but only comes within a 10% range.

In contrast to the assumptions of energy-partitioning in the homogeneous and the unif
shear flow cases, our simulations clearly show that the inner translational exesgyot
equi-partitioned among its two components, which explains why Eq. (38) may only be u:
as an approximate formula for the present test case.

A comparison of DEM and FPM shows that in the 2d case, they lead to the same f
pattern, density profile, and macroscopic moments, with only very small differences. In
following we compare the FPM in a 3d velocity space to the 2d DEM and see that, althot
some differences are noticeable, both methods qualitatively deliver the same results.

4.6. Comparison of 3D FPM and 2D DEM

In a comparison of the FPM method operating on a velocity space with three translatic
and three rotational degrees of freedom, the proper choice of the number demgities
Nsq (or solid fractions,g andvsy) in the 2d and 3d test cases is of high importance.

The geometric considerations of 2d close packing establish an upper bound for the s
fraction of vyg < vad max= (+/3/6) T ~0.907. Similarly, the hexagonal close packing in
3d yieldsvzg < vsgmax™ 0.74. The kinetic granular flow equation (1) is not valid for solid
fractions close to the maximal solid fraction. However, the different maximal solid fractiol
for two and three dimensions show that it is not sensible to simply,get v in the 2d
and 3d simulations and still expect similar results.

In the previous section we saw that when the mean free pédhof the order of the
diametera of the spheres, the density profile develops a peak close to each wall. T
phenomenon is independent of the spatial dimension; hence we assume that similar
not equal) density profiles are obtained, if

Aad  Aad
e 39
2= a (39)
Using Egs. (30) and (31), we find
vaahlg (vag) = 3 vaghy] (vaa). (40)

In particular, forvsg = 0.1 the diameter of a sphereass 1.106134. Using (40), the corre-
sponding solid fraction for a 2d translational velocity spaagds- 0.213. For each scheme
the distance between the walls is set ta. #0a. This guarantees that both schemes will
develop the characteristic density peaks close to the walls. However, we cannot expect
they will be identical. The reason for this becomes clear when we consider the ene
distribution in the system. The inner translational enexgig responsible for the collision
frequency. If the inner energies were totally relaxed, then the total inner energy would
evenly distributed over all degrees of freedom. For this DEM implementation this mez
that the inner translational energy is twice the inner rotational energy, (as the trans-
lational velocities are 2d but the spin is only 1d). On the other hand, in the FPM mett
e, =&,, since there are three translational and three rotational degrees of freedom.
partitionings of the total inner energies to the various degrees of freedom are different
the two schemes and hence the collision frequencies are different as well.
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FIG. 10. Energy profiles for the 3d FPM and the 2d DEM.

Deviations in the energy profiles produce deviations in the density profiles because
particles accumulate in the “colder” central core of the shear flow.

The stationary profiles for the bulk velocity and the spin again agree very well for th
two methods, despite the different velocity spaces in which they are operating. The cL
are not shown here since the 3d FPM profiles are essentially the same as the 2d pr
given in Figs. 5 and 6.

As mentioned above, different dimensions of the velocity spaces mean that we ca
expect identical energy profiles for the two methods. Figure 10 shows the profiles of
total energye,t, as defined in (37), the inner translational eneggyand the inner rotational
energye,. All the energy profiles are scaledim &, which is the inner translational energy
for a hard sphere gas with most probable spred

The inner energies, ande, of the FPM are very close to each other. As these ener
forms have the same number of degrees of freedom, namely three, the profiles shov
the flow is nearly relaxed. The inner energies found in 2d are qualitatively very similal
those found in 3d.

The difference between tleg ande,, profiles for the FPM is larger close to the boundary
This is due to the fact that the shearing of the walls adds energy to the flow in this re
and the roughness of the particles then produces large changes of the spin leading to |
inner rotational energy in this region.

The inner energy profiles of the DEM are also close to relaxation gith 2e,, after
taking account of the differing number of degrees of freedom. As with the ERMas a
local maximum close to the wall.

The total energy profile derived from the FPM is around 15% lower than that deri
from the respective DEM profile. Dimensional differences, which were described ear
again produce this deviation in magnitude. Importantly, the shapes of the energy prc
are very similar.
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FIG. 11. Density profiles for the 3d FPM and the 2d DEM.

The differences in the inner translational energies between the two methods naturally
to deviations in the number density profiles, shown in Fig. 11. The gradient of total inr
energy in the boundary layers is slightly larger for the FPM than for the DEM. This lea
to a deeper U shape for the inner energy with relatively lower levels of inner energy in
center of the channel for the FPM. Lower inner energy means lower collision rates, leadin
smaller particle collisional pressures and therefore higher densities. This is clearly visibl
Fig. 11 by the slightly higher central densities and slightly lower boundary layer densit
for the FPM. The differences in the inner energy profiles have caused more particle:
accumulate in “colder” central regions of the flow.

The differences in the energy profiles are not the only reason for the differences in
density profiles. Here again, the differences in the dimensions have an important influe
on the profiles. However, the two profiles are qualitatively similar and show the peak
density at the boundary of the flow domain and a minimum at the distance of a diamet:

The comparison of DEM and FPM has shown that they lead to similar macrosco
moments, with only small differences. The dimension of the velocity space plays a moc
but important role in the distribution of the inner energy between the various degre
of freedom and thus on the energy and density profiles. The fact that the present D
implementation only uses a reduced velocity space has to be kept in mind if indust
problems are modelled. The closeness of the velocity and density profiles, however, sug:
that the use of the 2d DEM to model 1d and 2d granular flows is unlikely to introdu
significant errors.

In the next section, computational times of the two methods are compared. It is shc
that, for dilute and moderately dense ensembles, the FPM is much faster than the DEN

4.7. Comparison of Computation Times

To determine the efficiency of the DEM and the FPM, we consider the CPU-time tha
consumed for the simulation of a time interval of lengtfi. This certainly depends on the
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number of particles in the system. Where the DEM for the Couette flow delivers reason
results for as few as 10 particles, the FPM needs at least a handful of particles in even
with lengthl. The cell size for the FPM depends on the mean free pébcausé < A. If
the distance between the walls in the Couette flow is 28d the profiles are to be evaluatec
at, say, 100 different positions or at everylD of the mean free path, then the FPM neec
at least a few hundred particles, where the DEM still uses 10. However, the “noise” of
profiles also depends on the number of particles that are used for the averaging at a pc
or within a cell. For an objective comparison of efficiency, we compare the CPU-times
the simulation ofN particles per scaled time interval

The DEM usually does not use more than a few thousand particles for its simulat
Here we choose a maximum number of 1000 discs.

In the following, four different settings are considered, namely two for the DEM, usi
a parameter ratio df,/m= 10,416 and 1042. The resulting energy profiles are such tt
the mean overlap is around 0.8% and 2.4%, respectively. The two settings for the FPN
distinguished by the calculation of the post-collisional velocities. In a first run, the pc
collisional velocities are determined by solving the force equations for the spring—das!
model, as is done in the DEM, i.e., by a simple explicit scheme solving the systen
ordinary differential equations, Eqgs. (24)—(26). In a second run, the hard sphere colli
model for the FPM with

e=0.95 weset B =0.915 (41)

as computed from the spring—dashpot model with friction coeffigieat1CP.

All runs simulate a Couette flow at a solid fractiogy = 0.1 for the FPM and matching
vog = 0.213 for the DEM. The profiles are evaluated at 100 different positions of the tc
distancel. = 101 + a between the walls.

The CPU-times per 100 time units simulation time running on a DEC 3000/600 are gi
in Fig. 12. We vary the number of particles in this DEM by changing the length of t
control volume along the plates, while keeping the number density constant.

500

4001

DEM with kn/m =10416
DEM with kn/m = 1042

23001 « FPM, spring—dashpot coll.
i + FPM, hard sphere coll.
& 200

100

0 1000 2000 3000
# particles

FIG. 12. CPU-time for 100 time units simulation time, dependent on the number of particles.
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The uppermost line, representeddghows the CPU-time for the DEM with a parameter
ratio ofk,/m= 10,416 52, i.e., when the soft particle collisions are very close to hard sphe
collisions, as shown in Fig. 2. For more than 100 simulation particles, the dependenc
the CPU-time on the number of particles is almost linear.

If the parameter ratio is reduced kg/m=1042 s2, the particle collisions are softer
and the time for a binary collision is a factor ¢fL0. Hence, the time step is larger and
the CPU-time is reduced by this factor. We found that for a ratik, i = 1042 s?, the
stationary profiles for the Couette flow do not vary more than 5% from the correspond
profiles for “very hard soft collisions” witk, /m = 10,416 s2. Hence, if minor deviations
are acceptable, one might also choose to run the DEM simulations with this larger time s
The corresponding CPU-time, depending on the number of simulation particles, is gi
by the line denoted byl in Fig. 12. For even smaller parameter ratiggm, the deviation
from the hard sphere profiles is profound and is therefore not considered here.

On the other hand, the FPM is much faster. The FPM simulating the binary sprin
dashpot encounter by solving the underlying soft particle collision model is denoted by
in Fig. 12. It shows that the CPU-time is a factor of 5 faster than the CPU-time of the DE
with parameter ratit,/m= 1042 s2, or a factor of 14 for a ratio df,/m= 10,416 s2.

The FPM based on the hard sphere collision model is slightly faster again, see the
denoted by the- signs. The CPU-time is a factor of 6 to 18 faster than the above mention
DEM simulations. Of course, the hard sphere model with congtaistnot particularly
well-suited, if the friction coefficient is close to one, since thghactually depends on the
pre-collisional velocities.

A word of caution is necessary with such comparisons. Not only do the DEM and FF
have different velocity spaces and therefore different calculation costs, but the implem
tations also use different languages. The DEM is written in Fortran 77, whereas the F
implementation is a C-code. Different high level languages may, for the same proble
result in different computation times. This difference also depends on the platform. In
dition, the DEM code has been optimized for dense flows and would be faster if optimiz
for modest density flows such as these. Despite these factors which will affect the spe:
speed factor differences, the underlying shapes of these curves will not be affected an
expect the FPM to still be significantly faster.

If the solid fractionvsy increases, the mean free path becomes smaller. As a con
quence, the discretization of the FPM has to be refined as well. In the FPMyfer0.1
andL = 10034 + &, the mean free path is split into a fixed number of cells. (To improv
readability, the subscript 3d is omitted in the following ads set tovg =0.1.) If the gap
between the walls is kept constant with= 101 + a, wherev = vy, then, for an increasing
solid fraction, the number of cells in the whole domain increases also. For instaace2
givesL ~ 27\ + a, increasing the number of cells by a factor of 2.7.

The DEM does not have to resolve the mean free path; i.e., the number of partic
necessary for the scheme is independent of the solid fraction. Hence, the CPU-time
unit time and for a fixed number of particles is nearly constant with respect to the sc
fraction (it increases only slightly, since the number of neighbours increases with the s
fraction).

In Fig. 13, the CPU-times of the two schemes are compared for a varying 3d solid fract
(the corresponding 2d solid fraction for the DEM is computed via (40)). The solid lines ¢
the interpolated curves. One thousand particles have been used for the DEM for all s
fractions. For the FPM, 1000 particles are usedvfervg. For higher solid fractions, the



KINETIC THEORY AND DISCRETE ELEMENT SCHEMES 23

200 " DEM with k /m = 10416
= o DEM with k?]/m = 1042
2000/ * FPM, spring—dashpot coll.
+ + FPM, hard sphere coll.
QE,1500
3 FPM faster ! transition ! // DEM faster
8 i regime f

-

o

o

o
T

]
|
I
I
|

500} :

I

8.1 0.2 0.3 0.4 0.5 0.6
3d solid fraction

FIG. 13. CPU-time for 100 s simulation time with varying solid fractiog.

number of cells increases. If the number of particles per cell is kept constant in the FP
maintain consistent accuracy, the total number of particles in the system grows by a f:
vh® 1) /vgh@ (vp).

In the moderately dense stage fok 0.32, the FPM is always faster than the curren
DEM, even for the softer spheres with/m= 1042 s2. For higher solid fractions in the
transition regime (B2 < v < 0.46, the FPM, based on the hard sphere collision, is st
faster than the DEM wittk,/m= 10416 s2, but slower than the DEM using the softer
collisions. Forv > 0.46, this DEM is finally always faster than the FPM. The limits ir
the inequalities quoted here are approximate in nature. This last range is a very impc
regime since all applications which include gravity have solid fractions which exceed
limit. These applications are those for which DEM becomes a viable and preferred or
for modelling technique. The inclusion of more degrees of freedom, such as patrticle
shape, and density distributions, also strongly favours the DEM as the dimension of
space in which the FPM scheme operates rises strongly and sufficient particles mu
available to statistically sample all these dimensions.

5. CONCLUSIONS

A particle scheme for solving kinetic granular flow equations, based on finite poini
methods, and a discrete element method were compared using a homogeneous gr
flow and a granular Couette flow. The macroscopic flow quantities (velocity, density,
inner energy profiles) given by the two methods agree very closely for simulations
two dimensions. Three dimensional kinetic FPM solutions for the Couette flow were ¢
compared with the two dimensional DEM, revealing qualitatively similar behaviours. T
flow velocity and density profiles are quantitatively close, with moderate differences
the magnitudes of the inner energies. Most of the quantitative differences result from
difference in the dimensionalities of the velocity spaces of the two solutions. The in
energies per degree of freedom were very similar for this case.
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It is shown that the important criterion for making valid comparisons between two a
three dimensional solutions is that the mean free path lengths of the two flows be the s¢
Matching the solid fractions does not lead to valid comparisons, because the dynamics
then be quite different.

This suggests that the use of two dimensional simulations to solve for granular flc
which are one or two dimensional in space gives results that are close to those obta
using a three dimensional scheme. This is important for the interpretation of the widespr
two dimensional DEM simulations of geophysical and industrial granular flows.

For dilute and moderately dense particle ensembles, the FPM is faster than the dis
element method. For dense flows or flows with complex geometries or complex parti
distributions the FPM becomes increasingly expensive and the DEM becomes much n
efficient.
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